Thermoelectric efficiency in nanojunctions: a comparison between atomic junctions and molecular junctions.
نویسندگان
چکیده
Using first-principles approaches, we investigate the thermoelectric efficiency, characterized by the figure of merit ZT, in metallic atomic junctions and insulating molecular junctions. To gain insight into the properties of ZT, an analytical theory is also developed to study the dependence of ZT on lengths (l) and temperatures (T). The theory considers the combined heat current carried by electrons and phonons. We observe a characteristic temperature: T(0) = (beta/gamma(/))(1/2). When T << T(0), the electronic heat current dominates the combined heat current and ZT is proportional to T(2). When T >> T(0), the phononic heat current dominates the combined heat current and ZT tends to a saturation value. Moreover, the metallic atomic junctions and the insulating molecular junctions have opposite trend for the dependence of ZT on lengths, that is, ZT increases as the length increases for aluminum atomic junctions, while ZT decreases as the length increases for alkanethiol molecular junctions.
منابع مشابه
Thermopower of molecular junctions: an ab initio study.
Molecular nanojunctions may support efficient thermoelectric conversion through enhanced thermopower. Recently, this quantity has been measured for several conjugated molecular nanojunctions with gold electrodes. Considering the wide variety of possible metal/molecule systems-almost none of which have been studied-it seems highly desirable to be able to calculate the thermopower of junctions wi...
متن کاملPeltier cooling in molecular junctions.
The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion 1-4 . Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions 5-9 has enabled studies of the relationship between thermoelectricity and molecular structure 10,11 ....
متن کاملConductance of Pd-H Nanojunctions
016802-1 Results of an experimental study of palladium nanojunctions in a hydrogen environment are presented. Two new hydrogen-related atomic configurations are found, which have conductances of 0:5 and 1 quantum unit (2e2=h). Phonon spectrum measurements demonstrate that these configurations are situated between electrodes containing dissolved hydrogen. The crucial differences compared to the ...
متن کاملAdvanced simulation of conductance histograms validated through channel-sensitive experiments on indium nanojunctions.
We demonstrate a self-contained methodology for predicting conductance histograms of atomic and molecular junctions. Fast classical molecular-dynamics simulations are combined with accurate density functional theory calculations predicting both quantum transport properties and molecular-dynamics force field parameters. The methodology is confronted with experiments on atomic-sized indium nanoju...
متن کاملThermoelectricity in atom-sized junctions at room temperatures
Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 3 11 شماره
صفحات -
تاریخ انتشار 2009